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DUAL RELATIVITY AND LORENTZ

TRANSFORMATIONS FOR LIQUID-LIKE

MEDIA AND STATISTICS FROM SCALING

CONCEPTS FOR GEOMETRY
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A dual class of Lorentz transformations (dual LT) for linear and Brownian motions in liquid-like media, is
presented and discussed. It descends from two LT groups, for self-diffusion in simple liquids (BLT) and its
geometrical analogy (GLT), which turned out to represent promising basic tools to deal with statistics at dif-
ferent length scales. Time dilation and length contraction of BLT occur upon ordering the originally indistin-
guishable molecular disorder in the liquid medium (i.e., a diffusivity lowering), giving rise to universality and
scaling laws in polymer solutions. Dual LT exhibit a rich phenomenology, leading to a scale-dependent
motion concept, where Brownian and quantum movements somewhat correspond. Density correlations in
simple liquids, for instance, are suggested on this basis to behave like radial wave functions at the atomic
scale. We also report some remarks on statistics in general, and its connection towards geometry.

Keywords: Dual relativity; Geometrical scaling law; Statistical physics; Polymer solution; Simple liquid

INTRODUCTION

A relativistic theory of Brownian movement for self-diffusion in liquids (BR) has been
recently formulated to derive the main scaling laws of polymer solutions [1–3]. In the
Einstein theory of relativity [4], any couple of standard metric tensors, g and g0, leave
the space time interval (s) unchanged upon any coordinate change, like x ! x0:

ds 02 ¼ ds2 ¼ �g��dx
�dx� ð1Þ

and transform as:

g0�� ¼
@x�

@x0�
@x�

@x0�
g�� ð2Þ
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In BR instead, let time t � z0 and diffusivity be D ¼ � �gg00, the new Brownian interval:

d�2 ¼ � �gg��dz
�dz� 3ð Þ

resorts to mean square displacements, for example according to dx� !
ffiffiffiffiffiffiffiffi
dx�

p
and dt !

ffiffiffiffiffi
dt

p
. They implicitly correspond to given probability distributions, and so

(polymer) statistics may be translated in terms of geometry. It was afterwards
suggested, precisely, that scaling laws of polymer solutions arise from ordering a space
indistinguishably disordered [5].

BR points first out a novel definition of macromolecule in liquid. It would be iden-
tified by the curvature change caused by a local mobility variation produced into diffu-
sive spacetime. The simplest example is evidently provided by the Brownian special
relativity (BSR) versus random walk, where lengths are contracted upon lowering the
randomness of the host medium. It suffices starting from:

d�2 ¼ Ddt� ðdx2 þ dy2 þ dz2Þ ð4Þ

and, owing to a transformation like 1!N, to locally decrease the suspension mobility.
We originally considered N liquid molecules collected in a linear tube of length Na,

a being the molecular size. When these units are merged together into a single chain
(and chemical transformations are absent) the Lorentz transformations (LT) provide
a geometrical constraint ruling the transition between rod-like and curvilinear tubes,
i.e., from single molecules to a corresponding macromolecule in solution. Letting the
new Lorentz factor be 1��D=D ¼ DN=D ¼ � [1], the Brownian LT taking place are
(in unit of D, see Appendix I):

t0 ¼ ð2� �Þtþ ð1� �Þr2

r
02 ¼ �r2 þ ð�� 1Þt

(
ð5Þ:

and, inversely ð�! ��1Þ:

t ¼ ð2� ��1Þt0 þ
�� 1

�
r02

r2 ¼ ��1r02 þ
1� �

�
t

8>><>>: ð6Þ

They result into the following laws of time dilation and length contraction (TDLC):

dt0 ¼ ��1 dt

dr02 ¼ � dr2

(
ð7Þ

which return random walk size and Rouse time behaviors of ideal phantom chains, i.e.,
without excluded volumes (or self-avoiding walks) [6]. For Rouse-like coils, in fact, one
has � 
 N�1 and thus:


0 ¼
ffiffiffi
�

p
Na ¼

ffiffiffiffi
N

p
a

t0 

Nt1

�
¼ N2t1

8<: ð8Þ
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primes still denoting the polymer frame, t1 being an intrinsic molecular time and 
 � r2.
Another manner of focusing the results achieved is starting from 
2t ¼ const (TDLC,
in Eq. 7) and considering the universal exponents associated ð� ¼ ln 
0=lnN,
� ¼ ln t0=lnNÞ:

� ¼ 1 , � ¼ 1 ðrod-like tubeÞ

� ¼
1

2
, � ¼ 2 ðideal coilÞ

� ¼
3

5
, � ¼

9

5
ðreal coilÞ

8>>>>>><>>>>>>:
ð9Þ

They may only be determined a priori in the rod-like case, setting the constant value to
2�þ � ¼ 3. While the Rouse scaling (second row) was surely expected being part of this
behavior, we can surprisingly ascribe to the previous table the swollen Flory coil as well.
It is endowed with mass and would correspond to � 
 N�4=5, but there is no reason at
the moment to suppose a mobility scaling the like this in the BL factor.

In general, every metric information is primarily summarized by the diffusion coeffi-
cient behavior, D ¼ D(zk, t). This is what we started from, in examining real coil and
polymer melts. In the first case, the excluded volume was modeled through a
Schwarzschild singularity in four dimensions, and an analogy between black holes
and single real chains in unmaterial media was implicitly pointed out. Diffusivity was
assumed to vanish at the (Schwarzschild) coil radius, identifying the average end-to-
end dimension of a long molecule lying into a curved but empty space. General relativ-
ity (GR), in the second instance, yielded a new scaling behavior in the form of a
(weakly) covariant equation, denoting a modified Stokes law holding in fluids highly
concentrated. Note that, while BSR makes use of a two-dimensional metric, averaged
over the root mean square that the random motion depicts, line elements of GR involve

instead all spatial coordinates (still with d� ¼
ffiffiffiffiffi
dt

p
and dz ¼

ffiffiffiffiffiffiffi
dx2

p
):

d�2 ¼ g00d�
2 � g

d


2 � g��d�
2 � g’’d’

2 ð10Þ

The framework above might be termed as weakly covariant. Clearly, liquid diffusiv-
ities cannot be regarded as impassible limits of nature, like Einstein could state for the
light speed. One would rather expect here a limit horizon, able to reorganize itself and
interact with the same physical world which it bounds. Secondly, the Brownian LT are
not invertible and the ordinary principle of covariance holds no longer. This may sound
as physically uncorrect, but is simply a formal consequence of using (Brownian) LT to
model a statistical phenomenon. On the one hand, similarly to SR, in the simple liquid
frame the proper polymer length Na is seen to contract by

ffiffiffiffi
N

p
, whereas time appears to

run slow by N2. Such properties find their origin into local geometry transformations
and do not belong to the chain as a whole [6]. On the other, however, BLT fix definitely
the relationship between any couple of length or time intervals, and no discrepancy
between observers at rest and in relative diffusion can take place. Translating into
another insight, there is no possible equivalence for two different disorder degrees.
Whenever a frame of reference detects some time dilation and length contraction, it
is allowed to conclude being linked to the highest disorder (the larger diffusivity) and
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thus, surprisingly, being in absolute (Brownian) motion with respect to the other obser-
ver. In short, statistics does not admit a formulation that is motion and/or scale covariant
[5]. The either concept in BSR, which follows accordingly, identifies a diffusive
Brownian medium that, on average, is still insensitive to translational movements
(see SR). It would be characterized by vanishing mean velocity and drift, but provided
with non-null diffusivity and velocity fluctuations. There could be, in other words,
another phenomenology level, interacting with the relativity paradigm, which the
birth of statistics would be ascribed to.

The previous view pointed out also an interesting geometrical analogy, which has
promising prospects in studying the nature of statistics in general [2,5,7].
Reformulating the picture above in terms of simple geometry (GSR) may return
in fact geometrical constraints that, in principle, can hold at any length scale. We
so applied LT to a scalar shape (�), which localizes a measure (x) in some extended
space (%), for instance according to:

dx ¼ � d% ð11Þ

and, in the end, the relation achieved consisted of a simultaneous extension and shape
contraction, or [7]:

��ð%
0Þ 
 ��ð%Þ ð12Þ

This is likely the simplest form of scaling laws for geometry (or geometrical scaling
laws, GSL). Whenever shape is correctly regarded like some probability (or density),
it can join statistics defined at two different scales, � and � (see Fig. 1a). In order to
complete the picture formulated, we were led then to thinking of the initial elementary
like an uncertainty relation for geometry (GU): measuring (a length) undetermines
extension and shape [5,7]:

%� 
 x ð13Þ

Briefly, GLT come from regarding a molecular mobility decrease as equivalent
to a shape that bounds some extended space portion. When we pass from diffusional

FIGURE 1 Scheme of (a) geometrical scaling (GSL) and (b) geometrical uncertainty (GU) in the liquid-
chain system.
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to geometrical frameworks, the condition �!��1 simply transforms into %!�%, and
the first SR postulate of covariance is recovered. BLT in fact, conserve any spacetime
interval, but are not invertible. Let L� be direct and inverse transformations respect-
ively, their product differs from the identity matrix (I ) by (Eqs. (5) and (6)):

D� ¼ L� I ¼
1 �D

D�1 �1

� 	
� ð14Þ

with L ¼ LþL� ¼ L�Lþ and � ¼ ð1� �Þ4=�2. Thus, let z � ð%, tÞ, requiring BLT to be
invertible equals to set D�z ¼ 0, which easily reduces to:

��2ð�Þ ¼ 0 ð15Þ

As expected, the former condition is satisfied by �¼1, i.e., a homogeneous system like
the starting simple liquid. If � 6¼ 1, � should be conceived like some functional operator
for the four-dimensional interval [8].

Pictorially, one might also imagine a lens (or else, a mirror) splitting chain and liquid
frames of reference in two distinct worlds. Any length and time intervals, observed from
both mirror sides, conserve their absolute values, but not their coordinates, which are
indetermined (Fig. 1b). We were so brought to define an uncertainly relation for
geometry, though there is a further, much simpler evidence that would encourage to
introduce a principle like GU. As for quantum positions and momenta, which
cannot be simultaneously determined with arbitrary precision [9], shape cannot be
described independently of the extension where it lies (and viceversa). In light of GU,
the same metric tensor determinant, g ¼ det g��, would express this geometrical uncer-
tainty too, as discussed elsewhere [5]. The origin of experimental errors can be ascribed
to GU as well: when a space portion can be regarded as much larger than any measure
of length performable therein, then the uncertainties, in principle, may be arbitrarily
reduced. At the atomic scale, extension and measure get the same order of
magnitude, and the Heisemberg relation holds. So, features like the nature of the obser-
ver, even the unit of measure or, better, the scale or focus, would take a crucial role in
physics. This is what another program, termed as scale relativity, investigated over the
last decades as well [10]. Nevertheless, in spite of rising questions sometimes similar to
those here presented, its fundamentals, and aims and results are significantly different.

To further summarize the previous picture, to pass from studying polymer statistics
(BR) to statistics in general, suggested us to set a problem merely geometrical, out of
time and mass concepts. BLT were interpreted in terms of their geometrical counter-
parts, which are now covariant (GLT), but provided with an uncertainty relation for
geometry (GU). The meaning of GSL gets thereby two-fold: they link geometrically
different spatial statistics and, at the same time, split up single phenomena into distinct
statistical dualities depending on length scale (i.e., atom–molecules, monomer–
polymer, and so on). In other words, statistics is arising from, scaling with and indeter-
mined by the length scale of observation [5].

Note that, not to weaken or break covariance, it was obviously sufficient to have a
linear diffusive law, like

ffiffiffi
%

p
/ t. Of course, if disorder could evolve accordingly, BSR

would formally get back to SR, but in this way statistics of polymer solution could
never take place (the new Lorentz factor getting independent of large N values, i.e.,

DUAL RELATIVITY AND LORENTZ TRANSFORMATIONS 351

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
7
:
4
9
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



�!1� ð1� �Þ2 ’ 1Þ. This is just the transient solution of the Langevin equation,
holding at short time scales, when the frictional force has not produced yet appre-
ciable effects [11]. Polymer statistics would so appear being intimately related to the
time-dependence of the (diffusive) motion equation.

In this article, the picture above is continued towards a two-fold direction: (i) pro-
ceeding the work in progress, on macromolecules in solution and statistics in general,
with attempting some more general transformation class; (ii) suggesting a heuristic deri-
vation of distribution functions in liquids that relies on scaling concepts for geometry.
It should be remarked that this preliminary study belongs to a much wider picture [5],
which is waiting for results from several other investigations before to reach the novel
organic view on statistical and thermal physics that we set out to formulate.

DUAL RELATIVITY AND LORENTZ TRANSFORMATIONS

(i) Dual SR

The present section derives a dual transformation class that accounts for kinematics
(order) and diffusion (disorder) through a unified picture of motion. To this end,
define a time �, a radial coordinate % and a limit velocity ‘ so to have, for instance,
the superposition that follows:

‘2�2 ¼ �2t2 þDct

%2 ¼ r2 þ r2

(
ð16Þ

where � and Dc are respectively the limit speed and diffusivity. The latter value, refer-
ring to:

Dc ¼ �xc ð17Þ

undetermines the translational motion by the limit measure xc (also, the impassible limit
measure in GSR [7]). The spacetime interval to handle now is:

ds2 ¼ ‘2d�2 � d%2 ð18Þ

and therefore, letting " ¼ d%=d� and � ¼ "=‘, (direct) dual LT are:

�0 ¼ ð1� �2Þ
�1=2

ð� �
�

‘
%Þ

%0 ¼ ð1� �2Þ
1=2

ð%� "�Þ

8<: ð19Þ

whilst TDLC laws become:

d� ¼ ð1� �2Þ
�1=2d�0

d% ¼ ð1� �2Þ
1=2d%0

(
ð20Þ
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Expliciting � provides a time-dependent relationship:

�2 ¼
1

‘2
d%

d�

� 	2

‘

¼
v2tþ �Dc

�2tþDc
!

�2 ðSRÞ

� ðBSRÞ

(
ð21Þ

where v and � measures the relative speed and diffusivity. Working in unit of � ð� ¼ vÞ
and recalling � ¼ 1� � (see also Appendix I) carry to:

ð1� v2Þt2 þ �xct ¼ t02 þ xct
0

fð1� v2Þtþ �xcg%
02 ¼ ðtþ xcÞ%

2

(
ð22Þ

giving SR and BSR as special cases and pointing two distinct, elongational and time-
like, Lorentz factors out:

dt ¼ ð1� �2
T Þ

�1dt0

d%2 ¼ ð1� �2
LÞd%

02



ð23Þ

which fulfill:

ð1� �2
T Þðt

0 þ xcÞ ¼ ð1� �2
LÞðtþ xcÞ ¼ ð1� v2Þtþ �xc ð24Þ

Mathematical analysis of Eq. (12) is not the aim of the present work. However, some
meaningful properties can be found in Appendix II.

(ii) Particle Energy

Consider the relativistic energy of a particle with rest mass m0 [4]:

E ¼
m0‘

2

ð1� �2Þ
1=2

ð25Þ

and its double MacLaurin expansion in � and �. It turns out (see Appendix III):

E ’ ‘2 1þ
xc

t

� ��1=2

E0 þ
m0v

2

2
�
m0x

2t

� 	
ð26Þ

where E0¼m0 is the rest energy, the second addendum denotes the kinetic term and
x¼D stands the diffusivity contribution for. Although the expansion performed clearly
affects the time behavior, SR is expectedly found again upon t ! 1 and ‘! �.

RESULTS AND DISCUSSION

Ordered and disordered motions have been joint by means of the dual frame-work uni-
fying SR and BSR, where ‘ specifies the limit velocity of a particle that can move either
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translationally or diffusionally. As expected, Eq. (21) and the analysis reported in
Appendix II show that the first stage of motion is governed by BSR, tending asympto-
tically to get SRlike (see Fig. 2). Dual LT phenomenology is rather rich. For instance,
(i) as TDLC depend on time and are only defined upon v2tþ ð1� �Þxc � t� t0, opposite
phenomena of time contraction and length dilation can take place; (ii) time-reversal
transformations like t!�xc, with 1� v2 6¼ �, produce infinite length dilation
ð%!1Þ and time contraction ðt!0Þ; (iii) as a consequence of adding the Brownian dis-
order to the original LT, t gets admitting two algebraical solutions. This brings us to
recall the equivalence principle for entropy and matter, suggesting already the existence
of a second (kinematic) time, just driven by irreversibility and disorder [12]; (iv) lastly,
energy is relativistically corrected by the new limit quantity (m0‘

2) and two time-depen-
dent diffusive contributions, negligible at large time scales.

To go further, consider the value taken by the diffusion coefficient of a particle
Brownianly moving in the liquid phase. It can be expressed by the thermal
Boltzmann energy, multiplied by a characteristic time and divided by its mass,
D ¼ ð�kBT=m0Þ [13]. Thus, letting E ¼ ð1þ ðxc=tÞÞ

1=2‘2 ~EE:

~EE ’ E0 þ
m0v2

2
�
�kBT

2t
ð27Þ

It is instructive sheding light on Eq. (26) through the energy equipartition theorem,
ð1=2Þm0v2 ¼ ð1=2ÞkBT [14]. It corresponds to t
 � and so to the mass–energy
equivalence, ~EE ¼ m0. When the particle behaves as though it were free ðt � �Þ, the
movement is ruled by BSR; from the first collision on (t> �), it enters the SR regime
(see Fig. 3). So, distinguishing the two stages of motion is never allowed. This is in
line with GU, where (measuring) a volume just meant some uncertainity source.
Moreover, it further supports the (fractal) Brownian picture for quantum motion,
already suggested within other theoretical frames [15–17]. Here, Brownian and quan-
tum movements would stand for the same phenomenon, linked by GSL, but observed
at different scales.

FIGURE 2 Behavior of the dual factor � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �2Þ

p
as a function of time, with � ¼ Dc ¼ 1, (a) v¼ 0.2,

�¼ 0.6 and (b) v¼ 0.6, �¼ 0.9.
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SIMPLE LIQUIDS

Taking advantage of GSL enables one to attempt a heuristic derivation of the total cor-
relation function of a liquid, h¼ h(r). For fluids whose molecules interact with central
additive forces, it provides directly the thermodynamic properties through the use of the
state equation and the total energy expressions [18]. It also plays a remarkable role in
investigating the amorphous state of matter in general (stability ratio in colloidal
systems [19], suspension viscosity [20], etc.).

In terms of the total correlation function, we set the left side of Eq. (12) to:

��ðrÞ ¼ 4� �



Z
r02hðr0Þ dr0 ð28Þ

�

 being the macroscopic density. Consider now some atomic eigenstate ð Þ, so that:

��ðr0Þ ¼  �ðr00Þ
�� �� � �

ð29Þ

angular and radial coordinates, as usual, being separated by  ð r0
!

Þ ¼  �’ð�Þ�ðr0Þ. In
this qualitative way, GSL takes the form:

hð�rÞ / �ðrÞ ð30Þ

and can be used to describe the first correlation peaks in a liquid medium. Precisely, we
start from pairwise distributions:

gðr�Þ ¼ 1þ hðr�Þ ð31Þ

and the typical behavior of hydrogenoid waves [21]:

Rn0ðernrnÞ ¼ Nn0e
�ernrnL1

nð2ernrnÞ ð32Þ

where Nn0 � ð2a�3=2=nn!Þ and r0 ¼ naernrn. Observe that r* is the radial dimension in unit
of correlation length, while a ¼ a0=Z is the ratio between Bohr radius and atomic
number. To work in compact form, the asymptotic expression of Laguerre polynomials
can be employed [22]:

�1=2Lm
n ðxÞ ¼ ex=2x�ðm=2Þ�ð1=4Þnðm=2Þ�ð1=4Þ cos 2

ffiffiffiffiffiffi
nx

p
�
m�

2
�
�

4

� �
þO nðm=2Þ�ð3=4Þ

� �
ð33Þ

FIGURE 3 The BSR-to-SR motion transition for a particle embedded in a liquid.
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After approximating the factorial term in Nn0 by the Stirling formula, and simple
algebraical manipulations, one obtains:

gðr�Þ 
 1þQnr
��3=2 cos z

ffiffiffiffi
r�

p
�

3�

2

� 	
ð34Þ

with r0 / r�,Qn / ��1=2n�3=4 e=nÞnð and z / 2ð2ZÞ
1=2. The last two coefficients should be

regarded as simple best fit parameters, not important here. Equation (34) is certainly
too simple to describe the radial density behavior accurately. Its trend, however,
fairly agrees with typical experimental behaviors. As examples, Fig. 4 shows (a)
liquid argon at 91.8K [23] and (b) molten lead at 613K [24]. The agreement would
encourage improving GSL by a deeper mathematical analysis. For instance, taking den-
sity fluctuations into account and expanding Eq. (29) through the whole orthonormal
eigenfunction basis. This is an interesting issue left for future work.

CONCLUSIONS

1. The main scaling laws in polymer solutions was recently derived from a relativistic
theory of Brownian movement in liquids (BSR). Universality arises whenever the
indistinguishable molecular disorder is ordered progressively. Polymer statistics
turns so out being intimately joint to the time-dependence of the (diffusive)
motion equation.

2. To focus statistics at different length scales, BSR was then translated into basic
geometry (GSR). We introduced the concepts of scaling law and uncertainty relation
for geometry (GSL and GU), which seem being of interest to any relevant spatial
statistics.

3. To combine kinematics (order) and diffusion (disorder) into an unique picture of
motion, an example of dual SR has been proposed. Dual LT give birth to a complex
phenomenology, undetermined between order and disorder. The relativistic energy

FIGURE 4 Pair correlation function of (a) liquid argon at 91.8K and 1.8 atm ðQn ’ 0:16, z ’ 9:5Þ and (b)
molten lead at 613K ðQn ’ 0:2, z ’ 9:2Þ.
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now depends on time, diffusivity and an impassible limit velocity, which refers to any
particle either moving linearly or Brownianly. The energy–mass equivalence equals,
in this framework, a notable result of statistical thermodynamics, the energy equi-
partition theorem.

4. In view of future analysis, it is lastly suggested to regard liquid density correlations
as GSL from the atomic scale (i.e., wave functions), and to further investigate the
nature of light, within a Brownian phenomenology.
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APPENDIX I

Consider the direct BLT, written as (prime denotes the chain frame of reference):

r02 ¼ �r2 þ �t
t0 ¼ �r2 þ !t



ð35Þ

To determine their coefficients requires imposing two conditions, i.e., the interval
invariance:

d�02 ¼ Ddt0 � dr02 ¼ d�2 ð36Þ

and the laws of time dilation and length contraction, both observed from any frame of
reference that is linked to the chain, !� ð��=�Þ � ��1 [25]. Thereby:

t0 ¼ ð2� �ÞtþD�1ð1� �Þr2

r02 ¼ �r2 þDð�� 1Þt

(
ð37Þ

and:

Lþ ¼
� �Dð1� �Þ

D�1ð1� �Þ 2� �

� 	
ð38Þ

To get the inverse BLT follows from setting �! ��1 into the former coefficients.
We remember again that BLT are not invertible, unless �¼ 1. However, when equilib-
rium is reached, the new liquid medium is supposed giving rise to a new limit state
ð�! 1Þ that, in the overall medium (liquidþ chain), would prevent the two LT from
colliding to each other.

APPENDIX II

The new elongational Lorentz factor satisfies the following limits:

ð1� �2
LÞ !

1� v2 t ! 1_ xc ! 0

� t ! 0 _ xc ! 1

� v2 ! 1� �

0 v2 ! 1þ
�xc
t

1� v2 þ � ðt ^ xcÞ ! 1

1 t ! �xc

8>>>>>>>>><>>>>>>>>>:
ð39Þ
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and so, first terms in the MacLaurin expansions (from top, for v, t, xc, �) are:

d


d
0

� 	



tþ xc�

tþ xc

� 	1=2 �2x2
c þ �xctð2� ðv2=2ÞÞ þ t2ð1� ðv2=2Þ � ðv4=8ÞÞ þ � � �

ðtþ �xcÞ
2

�1=2 þ
1� v2 � �

2xc
��1=2tþ � � �

ð1� v2Þ1=2 þ
v2 þ �� 1

2t
ð1� v2Þ�1=2xc þ � � �

1þ
xc

2t
ð1� v2Þ�1=2�þ � � �

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

ð40Þ

Timelike reference frames, reading:

ð1� v2Þt2 þ �xct ¼ t02 þ xct
0 ð41Þ

or else:

ð1� v2Þtþ
�xc
2

¼ �
�xc
2

� 	2

þð1� v2Þðt0 þ xcÞt
0

( )1=2

ð42Þ

yield:

� t !

ð1� v2Þ�1=2t0 xc ! 0

��1t0 xc ! 1

ð1� v2Þ�1=2
ðt02 þ xct

0Þ
1=2 �! 0

��1t0ðx�1
c t0 þ 1Þ v ! 1

t0 v ! 0 ^ �! 1

1 v ! 1 ^ �! 0

0 t ! �xc

8>>>>>>>>>>>><>>>>>>>>>>>>:
ð43Þ

and (from top, v, t0, xc, �):

tj j 


2ðv2 þ 2Þðt0 þ xcÞt
0 þ �2x2

cð1þ v2Þ � �xcð1þ v2Þð�2x2
c þ 4xct

0 þ 4t02Þ1=2 . . .

2ð�2x2
c þ 4xct0 þ 4t02Þ1=2

�xcðsgnðxcÞ�xc � 1Þ

2ð1� v2Þ
þ

sgnðxcÞ

�
t0 þ � � �

t0j j

ð1� v2Þð1=2Þ
þ
ð1� v2Þsgnðt0Þ � �ð1� v2Þð1=2Þ

2ð1� v2Þð3=2Þ
xc þ � � �

t0ðt0 þ xcÞ

1� v2


 �ð1=2Þ

�
xc

2ð1� v2Þ
�þ � � �

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

ð44Þ
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For example, it can be seen that the first equation from t returns the usual time dila-
tion law of SR, of course upon xc ! 0.

APPENDIX III

Let � ¼ ð1� �2Þ
�1=2, with:

�2 ¼
v2tþ �Dc

�2tþDc
ð45Þ

It can be expanded in the neighborhood of (v, �)¼ (0, 0):

�ðv, �Þ ¼ �ð0, 0Þ þ
@�

@v

� 	
vþ

@�

@�

� 	
�

þ
1

2

@2�

@v2

� 	
v2 þ 2

@2�

@v@�

� 	
�vþ

@2�

@�2

� 	
�2


 �
þ � � �

ð46Þ

where:

�ð0, 0Þ ¼ 1þ
Dc

�2t

� 	�1=2

@�

@v

� 	
¼ 0

@�

@�

� 	
¼ �

1

2

Dc

�2t
1þ

Dc

�2t

� 	�1=2

@2�

@v2

� 	
¼

1

�2
1þ

Dc

�2t

� 	�1=2

@2�

@v@�

� 	
¼ 0

@2�

@�2

� 	
¼

3

4

Dc

�2t

� 	2

1þ
Dc

�2t

� 	�1=2

8>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð47Þ

The relativistic correction to the particle energy depends, accordingly, on diffusivity:

E ¼
‘

�

� 	2

1þ
Dc

�2t

� 	�1=2

m0�
2 þ

m0v
2

2
�
m0D

2t

� 	
þOðv4, �2Þ ð48Þ
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